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PACKERS’ PUZZLE                                                        Kai Chung Tam

Teacher’s Guide — Getting Started                                  
Macau, People’s Republic of China

Purpose

In this two-day lesson, students consider ways to estimate the number of spheres that will fit within a con-

tainer.  They also will try to pack as many as possible into differently shaped containers.

The objective of this lesson is to have students use geometric solids so that they can solve basic packing

problems that arise in the real world.

Prerequisites

It is assumed that students are familiar with the calculation of area and volume of various shapes. Other

geometrical concepts related to circles, such as radius, diameter, and tangent lines, are also relevant. Infor-

mal exposition of rigid motions (parallel translation, rotation, and reflection) is preferred.

Materials

Required: Calculator, circular tokens of various sizes (e.g., pennies, bottle caps, checkers), and two-dimen-

sional “containers”. As a preliminary step, teachers need to prepare photocopies of 3 shapes (squares, cir-

cles, and equilateral triangles) of three different sizes each. Be sure to note the measurements (sides and

radii) of each of these shapes and for each token for students to make proper calculations.

Suggested: None.

Optional: Digital scale. A jar of candy or any container of identical objects.

Worksheet 1 Guide

The first four pages of the lesson constitute the first day’s work. Initially students can work on the first two

pages individually, but for the next two pages, they should to be organized into groups. Each group will be

provided tokens and shapes (containers) to model the orange packing situation. By combining different

ideas that the students came up with before they were separated into groups, they can fill out the table pro-

vided on the third page of the lesson and answer the questions that follow.

Worksheet 2 Guide

The fifth and sixth pages of the lesson constitute the second day’s work in which students should realize

that a dense packing is wanted. After a discussion of the density and the unit of a regular arrangement in

the plane, students will calculate the theoretical density of rectangular and hexagonal arrangement and

compare the result with the first worksheet. Finally, students will think about the extension to three dimen-

sions.

CCSSM Addressed

G-GMD.3: Use volume formulas for cylinders, pyramids, cones, and spheres to solve problems.

G-MG.1: Use geometric shapes, their measures, and their properties to describe objects (e.g., modeling a

tree trunk or a human torso as a cylinder).

G-MG.2: Apply concepts of density based on area and volume in modeling situations (e.g., persons per

square mile, BTUs per cubic foot).

G-MG.3: Apply geometric methods to solve design problems (e.g., designing an object or structure to satisfy

physical constraints or minimize cost; working with typographic grid systems based on ratios).
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Student Name:_____________________________________________ Date:_____________________

At the Orange Festival right after a bumper crop, a farmer invites guests from all over the town. He shows

the guests a full box of randomly arranged oranges, stating that anyone who could guess the exact number

of oranges can take home as many oranges as he or she can carry. 

© Wilfred Stanley Sussenbach | Dreamstime.com

Is there a difference between the randomly packed oranges on the left and the regularly arranged oranges

on the right? 

If you cannot just pour out all of the oranges and then count them one by one, what technique would you

use to determine correct the number of oranges in the box?

Leading Question

How can you determine the correct number of oranges that are in the container?
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Student Name:_____________________________________________ Date:_____________________

  1. Before you can answer the question, you need to make some assumptions to think more effectively.

One assumption you can make is that all the oranges are spheres. What other assumptions could you

make in your model that might not be true in the real world, but are basically useful in creating a math-

ematical model?

  2. Often it is simpler to look at an easier question before trying to

attempt a difficult one. In a two-dimensional model, containers

become planar. For example, they can be rectangles or triangles.

Oranges become circles, which cannot intersect with each other or

with the container. What methods might you use to estimate how

many circles can be packed into a box, without direct counting?

Describe how one of your methods works using words and mathemati-

cal notation.

  3. How could you use your knowledge of the area of circles to determine the maximum number of circles

that can fit into your container?
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Student Name:_____________________________________________ Date:_____________________

With your group, use the containers (shapes) that your teacher has provided and fill them with your

oranges (tokens). Try different size shapes and tokens. For each trial, choose one shape and one type of

token, then try to fit the tokens into the shape. Describe how you fit them in, and fill in one row of the fol-

lowing table. Try to have five unique trials.

Group Names:                                                                                                Shape of Container: 

#

Side or

radius of

container

(cm)

Capacity of

container 

C (cm2)

Radius of

token 

r (cm) 

Area of

token (cm2) 

Maximum

number 

N ′

Actual 

token fit 

N

N ′– N

Density

Nπr2/C

(%) 

1

2

3

4

5

   4. How did you fill in your tokens in each case?

   5. What accounts for the difference N ′– N?      

   6. How could you improve the estimation N ′, so that N ′– N becomes

smaller? When you propose your way

of estimating N’, think of

question 5.
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Student Name:_____________________________________________ Date:_____________________

   7. The density column calculates the true total area of the tokens, which is Nπr2, divided by the capacity,

C, of the shape. What kind of arrangement would give you a higher or lower density, a random arrange-

ment or a regular arrangement? Why?

   8. What other ways of calculating the number of oranges might exist?

How do you think the farmer knows the number? Do you think he

actually counted all of them?

   9. Should your answer be a whole number? Explain your reasoning. 

How might measuring the

weight of an orange help you

to determine how many are

there?

 22_Packers Puzzle R3:Layout 1  5/14/12  2:45 PM  Page 197



198

PACKERS’ PUZZLE

Student Name:_____________________________________________ Date:_____________________

Recall from the previous lesson that the prize for winning was that you got to take as many oranges as you

could carry. Suppose that you have already won the prize and the farmer offers some boxes to use to pack

oranges. 

A regular arrangement is one that can repeat indefinitely and looks the

same wherever you see it. More precisely, there is a unit of arrange-

ment so that you can do parallel translations to repeat the pattern in

any direction. The figure on the right shows a regular arrangement,

and indicates three copies of the unit. Using just one unit repeatedly,

you can extend the picture as far as you want.

10.  Find and draw a unit in each the following two arrangements.

A: B:

11.  If you have a container, density is the area used divided by the total area of the container. Find the den-

sity of the two units that you have chosen for arrangement A and arrangement B, as if the unit is a con-

tainer.
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Student Name:_____________________________________________ Date:_____________________

12. How do the two densities differ? Can you say that the density within one unit represents the overall

density? Why or why not?

13. Compare the results to your classmates’ and look at the unit that they have chosen. Did you choose the

same unit? Did you get the same density?

14. The Arrangement A is a square arrangement, while arrangement B is a hexagonal arrangement. Do you

understand why they are named this way? Why do you think they were named this way

15. If you have enough identical spheres (e.g., oranges, gumballs, baseballs), try to pack them regularly into

a container for which you know the volume. Knowing what you now know about density, what are pos-

sible arrangements? What is the density of each arrangement according to experiment or calculation?
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Teacher’s Guide — Possible Solutions

The solutions shown represent only some possible solution methods. Please evaluate students’ solution

methods on the basis of mathematical validity.

   1.  Some examples: all oranges are identical objects, all of them are spheres, the spheres and the container

should not overlap each other, and the spheres and the container are rigid.

   2. Any method will do, but good methods will have some form of organization to them. For example,

organize the tokens in rows and stack the second row on top of the first, so the circles are notched

together, and the height is minimal.

   3. Students should use the formula for the area of a circle, A = πr2, and the area of the shape (capacity) to

determine an upper bound for the number of oranges that can fit inside the shape by dividing the

capacity by the area of one token.

   4. See question 2 for an answer. Since the students are now in groups, combinations of methods might

have also been created.

   5. The space not occupied by the circles accounts for the difference. The more unused space there is, the

larger the difference.

   6. If it is a regular arrangement, the denominator can be changed to the area of a “unit containing one cir-

cle”. If it is a random arrangement, it is not very easy to estimate well by this method; however, in three

dimensions there is a way to estimate the volume of the unused space. Use any liquid to fill it up the

container to capacity and then measure the amount of liquid used! These are not advanced methods so

students should be motivated to find one.

   7. Some students might pack tokens into the shape randomly while others might do a regular arrange-

ment, so the “density” will vary. Yet, if we fix one arrangement of packing (random, squared, hexago-

nal), the density has only a little difference. 

   8. One other way to calculate is dividing the total weight by the weight of one orange.

   9. According to our assumption “that all oranges are equal”, the quotient should be exactly the same as the

number of oranges, but in reality, sizes vary.

10–15. 

In a square arrangement, each circle touches four other circles; in a

hexagonal arrangement, each circle touches six others. We use red lines

to draw a unit. On the left, all these rectangles are correct units. Spheres

have diameter equal to 1 cm. In the two squared ones, the total area of a

unit is 1 cm2. The used area is π • (0.5 cm2) therefore the density within

each unit is                                                                                               
78.54%.  The larger rectangle

gives the same density. On the right, the rectangle, parallelogram, and hexagon are all correct “units”.

For the rectangle, total area =(1 cm)•( cm ) ≈ ( cm2), and the used area = area of 

        2 circles = cm2, therefore the density = ≈ 90.69%. Using the parallelogram, the total area

        

becomes (1 cm) • ( cm) = cm2, and the used area equals exactly one circle, therefore the density  

is ÷ = , the same as before. The hexagon also gives the same result.
π
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3

3

2
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Teacher’s Guide — Extending the Model

A fascinating and far-reaching extension concerns fruit in a supermarket. The weekly ads often give a size,

like “15-size cantaloupe”. This applies to any fruit that is large enough to buy individually, like grapefruit,

pears, or lemons, but not to fruit like blueberries, cherries, or currants. Students could investigate what

these numbers mean. Is a 12-size cantaloupe smaller or bigger than a 15-size cantaloupe? What do these

numbers have to do with the way cantaloupes are packed and shipped? In fact, you could base a goodly

portion of a geometry course on the desire to understand the answers to such questions.

A quick beginning of an answer is that cantaloupes, for example, most commonly come in one of the follow-

ing sizes: 9, 12, 15, 18, 23, and 30. The smaller the number, the larger the cantaloupe. Why? The numbers

indicate how many will fit into a standard 40-pound case or shipping box, so 9-size is the largest. The

shapes of standard boxes are carefully chosen so that the right number of melons of any one size will fit

comfortably but with very little wasted space into the same standard-size box. Avocado sizes come in all

multiples of 4 from 20 to 40, and then 48, 60, 70, 84, and 96. The most common pear sizes are 70, 100, 150,

and 215. Boxes are marked on the outside with the size numbers of the contents. If you know someone in

the fruit and vegetable department of your supermarket, for example, have a look at the clever shapes of

the boxes which are adaptable to contents of different sizes.

You can begin thinking about boxes for packing fruit by thinking of one layer. Then it becomes, to a reason-

able first approximation, a two-dimensional problem such as finding the minimum size of a square that

holds n2 circles of radius r. What is the density of such an arrangement? This is better than any other rec-

tangular arrangement when n is small, but eventually an arrangement more like B than A of question 10

comes to have a higher density than an arrangement within a square. Or does it? Investigate the smallest

rectangular area into which to pack k circles all of radius r. Will the rectangle of smallest area that holds 7

circles in fact always hold 8?

Continue the previous investigation into three dimensions. What are different regular arrangements of

spheres, and what are their densities? The problem goes back to Kepler and was first solved by Gauss. If

you allow irregular packings, the problem is incredibly difficult and was finally solved only in 1998 by

Thomas Hales with computer assistance. See George Szpiro’s book, Kepler’s Conjecture, for a popular

account of this history. 

A closely related problem is that of the so-called Kissing Number, that is, the largest number of spheres that

can simultaneously touch a single sphere all of the same size. For circles in the plane the answer is 6. In

three dimensions, it was the subject of a famous argument between Newton and Gregory, with a debate

over whether the answer should be 12 or 13. An interesting physical experiment was done in the early 18th

century. Dried peas were placed in a kettle with water and allowed to expand; the result was the peas were

“formed into pretty regular Dodecahedrons” (Hales, 1731). This indicated that, perhaps, the answer should

be 12, which is correct but wasn’t proved until 1874!
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