GeoGebra Activity

A. Investigating the circumcenter.

Name \qquad

* Log on to GeoGebra *
* Save before you exit! *

GeoGebra does NOT automatically save

1) Open up a new GeoGebra file and draw and label a triangle.
2) Construct the perpendicular bisector for each of the sides.

> . Perpendicular Bisector Select two vertices, ...
3) Construct the point of intersection of the \perp bisectors.
$>$ Intersect Select two of the \perp lines
The intersection of the \perp bisectors of a triangle is the circumcenter.
4) Move the vertices of the triangle and note the location of the circumcenter.

Acute triangle: circumcenter is \qquad the triangle
inside, outside, on
Right triangle: circumcenter is \qquad the triangle
inside, outside, on
Obtuse triangle: circumcenter is \qquad the triangle
inside, outside, on
5) Construct the circumcircle.

- Circle with Center through Point

Select circumcenter and one of the vertices
6) Move the vertices of the triangle and make a conjecture regarding the circumcircle.
B. Investigating the incenter.

1) Draw and label a new triangle. (May use same file or open up a new file)
2) Construct the angle bisector for each of the angles.
\leftarrow Angle Bisector Select three points with the vertex the middle point, ...
3) Construct the point of intersection of the angle bisectors.
$>$ Intersect
Select two of the angle bisectors
The intersection of the angle bisectors of a triangle is the incenter.
4) Move the vertices of the triangle and note the location of the incenter.

Acute triangle: \quad Right triangle: Obtuse triangle:

The incenter of a triangle is equidistant from the sides of the triangle. This can be seen by constructing a circle using the incenter as the center of the circle.

5) Construct the incircle.

- Construct a perpendicular line using the incenter and one of the sides of the Δ. - Perpendicular Line Select incenter and a side of triangle

6) Construct the point of intersection of the \perp line and the side of the triangle. Intersect Select the \perp line and the side of the triangle it intersects.

- Construct a circle using the incenter as the center
- Circle with Center through Point Select incenter and the \perp intersection point

7) Move the vertices of the triangle and make a conjecture regarding the incircle.
C. Investigating the centroid of a triangle.
8) Open up a new GeoGebra file and draw and label a triangle.
9) Construct the midpoint for each of the sides.

- Midpoint or Center Select two vertices, ...

3) Construct the medians (segment connecting vertex to midpoint of opposite side).

Segment Select vertex, midpoint opposite side, ...
4) Construct the intersection of the medians.
$>$ Intersect Select two of the medians
The intersection of the medians of a triangle is the centroid.
5) Move the vertices of the triangle and note the location of the centroid.
Acute triangle:
Right triangle:
Obtuse triangle:
6) Move the vertices of the triangle and make a conjecture regarding the centroid.
D. Investigating the orthocenter of a triangle.

1) Draw and label a new triangle. (May use same file or open up a new file)
2) Construct the altitudes (segment connecting vertex and opposite side forming a \perp segment).

- Perpendicular Line

Select vertex and opposite side, ...
3) Construct the intersection of the altitudes.

P Intersect Select two of the altitudes
The intersection of the medians of a triangle is the orthocenter.
4) Move the vertices of the triangle and note the location of the orthocenter.
Acute triangle:
Right triangle:
Obtuse triangle:
5) Move the vertices of the triangle and make a conjecture regarding the orthocenter.

All the points of concurrency:

Circumcenter Incenter Centroid Orthocenter

