The result here complements the fact, presented in the task ``Right triangles …
The result here complements the fact, presented in the task ``Right triangles inscribed in circles I,'' that any triangle inscribed in a circle with one side being a diameter of the circle is a right triangle. A second common proof of this result rotates the triangle by 180 degrees about M and then shows that the quadrilateral, obtained by taking the union of these two triangles, is a rectangle.
This course has been designed to help students focus learning on specific …
This course has been designed to help students focus learning on specific areas of improvement. Unlike a typical college course where you would complete lessons in chronological order, this course allows you to focus on specific skills. Modules include: Arithmetic Review, Percents, Geometric Figures, Measurement, and Statistics
This task uses geometry to find the perimeter of the track. Students …
This task uses geometry to find the perimeter of the track. Students may be surprised when their calculation does not give 400 meters but rather a smaller number.
The goal of this task is to model a familiar object, an …
The goal of this task is to model a familiar object, an Olympic track, using geometric shapes. Calculations of perimeters of these shapes explain the staggered start of runners in a 400 meter race.
In this unit of five lessons from Illuminations, learners begin with a …
In this unit of five lessons from Illuminations, learners begin with a number-line model and extend it to investigate linear relationships with the Distance, Speed, and Time Simulation from NCTM's E-Examples. Students then progress to plotting points and graphing linear functions while continually learning and reinforcing basic multiplication facts. Instructional plan, questions for the students, assessment options, extensions,and teacher reflections are given for each lesson as well as links to download all student resources.
This is the second version of a task asking students to find …
This is the second version of a task asking students to find the areas of triangles that have the same base and height. This presentation is more abstract as students are not using physical models.
This task is an example of applying geometric methods to solve design …
This task is an example of applying geometric methods to solve design problems and satisfy physical constraints. This task models a satellite orbiting the earth in communication with two control stations located miles apart on earthsŐ surface.
Students build scale models of objects of their choice. In class they …
Students build scale models of objects of their choice. In class they measure the original object and pick a scale, deciding either to scale it up or scale it down. Then they create the models at home. Students give two presentations along the way, one after their calculations are done, and another after the models are completed. They learn how engineers use scale models in their designs of structures, products and systems. Two student worksheets as well as rubrics for project and presentation expectations and grading are provided.
This lesson unit is intended to help teachers assess how well students …
This lesson unit is intended to help teachers assess how well students are able to solve problems involving area and arc length of a sector of a circle using radians. It assumes familiarity with radians and should not be treated as an introduction to the topic. This lesson is intended to help teachers identify and assist students who have difficulties in: Computing perimeters, areas, and arc lengths of sectors using formulas and finding the relationships between arc lengths, and areas of sectors after scaling.
In this undergraduate level seminar series topics vary from year to year. …
In this undergraduate level seminar series topics vary from year to year. Students present and discuss the subject matter, and are provided with instruction and practice in written and oral communication. Some experience with proofs required. The topic for fall 2008: Computational algebra and algebraic geometry.
Seminar for mathematics majors. Students present and discuss the subject matter, taken …
Seminar for mathematics majors. Students present and discuss the subject matter, taken from current journals or books and write up exercises. Topic for spring 2003: Elementary topological properties of differentiable manifolds. Topics covered include Sard's theorem, the Thom transversality theorem, vector fields and the Poincare-Hopf theorem, and cohomolgy via differential forms. Prerequisites subject to negotiation with the instructor. Instruction and practice in oral communication provided. In this course, students take turns in giving lectures. For the most part, the lectures are based on Robert Osserman's classic book A Survey of Minimal Surfaces, Dover Phoenix Editions. New York: Dover Publications, May 1, 2002. ISBN: 0486495140.
This modeling task involves several different types of geometric knowledge and problem-solving: …
This modeling task involves several different types of geometric knowledge and problem-solving: finding areas of sectors of circles (G-C.5), using trigonometric ratios to solve right triangles (G-SRT.8), and decomposing a complicated figure involving multiple circular arcs into parts whose areas can be found (MP.7).
This task is intended to help model a concrete situation with geometry. …
This task is intended to help model a concrete situation with geometry. Placing the seven pennies in a circular pattern is a concrete and fun experiment which leads to a genuine mathematical question: does the physical model with pennies give insight into what happens with seven circles in the plane?
This task provides a concrete geometric setting in which to study rigid …
This task provides a concrete geometric setting in which to study rigid transformations of the plane. It is important for students to be able to visualize and execute these transformations and for this purpose it would be beneficial to have manipulatives and it will important that the students be able to label the vertices of the hexagon with which they are working.
In this web-based application from Illuminations students must sort shapes based on …
In this web-based application from Illuminations students must sort shapes based on the categories of the Venn diagram. Users can choose the categories from a drop down menu. The application includes instructions and exploration steps.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.