Updating search results...

Search Resources

49 Results

View
Selected filters:
  • waves
Light Waves and Scale Using Models
Restricted Use
Copyright Restricted
Rating
0.0 stars

How big is big and how small is small? In this activity, students examine scale using an interactive that models the size of the universe from Eiffel Tower to the building blocks of matter. Each step taken in the animations connects the size of common objects with wavelength of light and powers of 10.

Subject:
Physical Science
Physics
Material Type:
Interactive
Learning Task
Simulation
Provider:
Cary and Michael Huang
Date Added:
06/21/2016
Models of the Hydrogen Atom
Unrestricted Use
CC BY
Rating
0.0 stars

How did scientists figure out the structure of atoms without looking at them? Try out different models by shooting light at the atom. Check how the prediction of the model matches the experimental results.

Subject:
Physical Science
Physics
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Adams, Wendy
Carl Wieman
Chris Malley
Dubson, Michael
Gratny, Mindy
Kathy Perkins
Malley, Chris
McKagan, Sam
Michael Dubson
Mindy Gratny
Perkins, Kathy
PhET Interactive Simulations
Sam McKagan
Wendy Adams
Wieman, Carl
Date Added:
01/01/2007
Oil Oil Everywhere
Read the Fine Print
Rating
0.0 stars

This math meets ecology lesson provides hands-on experiences with mixing oil and water, provides surface area information about the 2010 oil spill in the Gulf of Mexico, and gives learners opportunities to estimate small oil spills of their own making. This lesson guide includes questions for learners, assessment options, extensions, and reflection questions.

Subject:
Mathematics
Material Type:
Interactive
Lesson Plan
Provider:
National Council of Teachers of Mathematics
Provider Set:
Illuminations
Author:
Lisa Cartwright
Date Added:
11/05/2010
Oil Oil Everywhere
Read the Fine Print
Rating
0.0 stars

This math meets ecology lesson provides hands-on experiences with mixing oil and water, provides surface area information about the 2010 oil spill in the Gulf of Mexico, and gives learners opportunities to estimate small oil spills of their own making. This lesson guide includes questions for learners, assessment options, extensions, and reflection questions.

Subject:
Mathematics
Material Type:
Interactive
Lesson Plan
Provider:
National Council of Teachers of Mathematics
Provider Set:
Illuminations
Author:
Lisa Cartwright
NCTM Illuminations
Thinkfinity/Verizon Foundation
Date Added:
11/09/2010
One World Ocean
Read the Fine Print
Educational Use
Rating
0.0 stars

In this activity, students learn about ocean currents and the difference between salt and fresh water. They use colored ice cubes to see how cold and warm water mix and how this mixing causes currents. Also, students learn how surface currents occur due to wind streams. Lastly, they learn how fresh water floats on top of salt water, the difference between water in the ocean and fresh water throughout the planet, and how engineers are involved in the design of ocean water systems for human use.

Subject:
Career and Technical Education
Earth and Space Science
Oceanography
Technology and Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering NGSS Aligned Resources
Author:
Integrated Teaching and Learning Program,
Janet Yowell
Malinda Schaefer Zarske
Sara Born
Date Added:
10/14/2015
The Phenomenon Of Sound: Waves
Restricted Use
Copyright Restricted
Rating
0.0 stars

In this lesson from Discovery Education students work in small groups at several stations to explore sounds with a variety of materials and different mediums.  Students make observations at each station while they explore to help them to explain that sound is created from vibrations and travel as waves. The resource includes suggestions for using a KWL chart to synthsize student learning from the activity as well as suggestions for further reading and extensions to the activity.

Subject:
Physical Science
Physics
Material Type:
Lesson Plan
Provider:
Discovery Education
Date Added:
06/16/2015
Physics 101
Unrestricted Use
CC BY
Rating
0.0 stars

This introductory, algebra-based, one-semester college physics book is grounded with real-world examples, illustrations, and explanations to help students grasp key, fundamental physics concepts. This online, fully editable and customizable title includes learning objectives, concept questions, links to labs and simulations, and ample practice opportunities to solve traditional physics application problems. Derived from College Physics by OpenStax.

Subject:
Physical Science
Physics
Material Type:
Textbook
Provider:
Rice University
Provider Set:
OpenStax CNX
Author:
John Carini
Date Added:
09/28/2016
The Physics Classroom
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Physics Classroom is intended for beginning physics/physical science students of all ages and their teachers. It offers a tutorial, interactives, concept builders, Shockwave studios, multimedia studios, and much more. This free web-site contains lessons, interactives, simulations, photo galleries, laboratory exercises, and the option to purchase additional assessment materials/ and for educators.

Subject:
Physical Science
Physics
Material Type:
Activity/Lab
Assessment
Curriculum Map
Diagram/Illustration
Full Course
Interactive
Simulation
Author:
© 1996-2019 The Physics Classroom
Date Added:
01/23/2019
Physics (PHYS 100 Non Science Majors)
Unrestricted Use
CC BY
Rating
0.0 stars

This is a course for non-science majors that is a survey of the central concepts in physics relating everyday experiences with the principles and laws in physics on a conceptual level. Upon successful completion of this course, students will be able to: Describe basic principles of motion and state the law of inertia; Predict the motion of an object by applying Newtonęs laws when given the mass, a force, the characteristics of motion and a duration of time; Summarize the law of conservation of energy and explain its importance as the fundamental principle of energy as a –law of nature”; Explain the use of the principle of Energy conservation when applied to simple energy transformation systems; Define the Conservation of Energy Law as the 1st Law of Thermodynamics and State 2nd Law of Thermodynamics in 3 ways; Outline the limitations and risks associated with current societal energy practices,and explore options for changes in energy policy for the next century and beyond; Describe physical aspects of waves and wave motion; and explain the production of electromagnetic waves, and distinguish between the different parts of the electromagnetic spectrum.

Subject:
Physical Science
Physics
Material Type:
Assessment
Full Course
Reading
Syllabus
Provider:
Washington State Board for Community & Technical Colleges
Provider Set:
Open Course Library
Date Added:
11/09/2017
Quantum Bound States
Unrestricted Use
CC BY
Rating
0.0 stars

Explore the properties of quantum "particles" bound in potential wells. See how the wave functions and probability densities that describe them evolve (or don't evolve) over time.

Subject:
Physical Science
Physics
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Carl Wieman
Chris Malley
Kathy Perkins
Malley, Chris
McKagan, Sam
Perkins, Kathy
PhET Interactive Simulations
Sam McKagan
Wieman, Carl
Date Added:
10/02/2006
Quantum Tunneling and Wave Packets
Unrestricted Use
CC BY
Rating
0.0 stars

Watch quantum "particles" tunnel through barriers. Explore the properties of the wave functions that describe these particles.

Subject:
Physical Science
Physics
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Carl Wieman
Chris Malley
Kathy Perkins
Malley, Chris
McKagan, Sam
PhET Interactive Simulations
Sam McKagan
Wieman, Carl
perkins, Kathy
Date Added:
08/28/2006
Quantum Wave Interference
Unrestricted Use
CC BY
Rating
0.0 stars

When do photons, electrons, and atoms behave like particles and when do they behave like waves? Watch waves spread out and interfere as they pass through a double slit, then get detected on a screen as tiny dots. Use quantum detectors to explore how measurements change the waves and the patterns they produce on the screen.

Subject:
Physical Science
Physics
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Adams, Wendy
Carl Wieman
Danielle Harlow
Harlow, Danielle
Kathy Perkins
McKagan, Sam
Perkins, Kathy
PhET Interactive Simulations
Reid, Sam
Sam McKagan
Sam Reid
Wendy Adams
Wieman, Carl
Date Added:
09/09/2006
Radiating Charge
Unrestricted Use
CC BY
Rating
0.0 stars

The electric field lines from a point charge evolve in time as the charge moves. Watch radiation propagate outward at the speed of light as you wiggle the charge. Stop a moving charge to see bremsstrahlung (braking) radiation. Explore the radiation patterns as the charge moves with sinusoidal, circular, or linear motion. You can move the charge any way you like, as long as you don’t exceed the speed of light.

Subject:
Physical Science
Physics
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Ariel Paul
Michael Dubson
PhET Interactive Simulations
Date Added:
02/01/2013
Radio Waves & Electromagnetic Fields
Unrestricted Use
CC BY
Rating
0.0 stars

Broadcast radio waves from KPhET. Wiggle the transmitter electron manually or have it oscillate automatically. Display the field as a curve or vectors. The strip chart shows the electron positions at the transmitter and at the receiver.

Subject:
Physical Science
Physics
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Adams, Wendy
Carl Wieman
Dubson, Michael
Kathy Perkins
LeMaster, Ron
Michael Dubson
Noah Podolefsky
Perkins, Kathy
PhET Interactive Simulations
Podolefsky, Noah
Ron LeMaster
Wendy Adams
Wieman, Carl
Date Added:
10/06/2006
Radio Waves & Electromagnetic Fields (AR)
Unrestricted Use
CC BY
Rating
0.0 stars

Broadcast radio waves from KPhET. Wiggle the transmitter electron manually or have it oscillate automatically. Display the field as a curve or vectors. The strip chart shows the electron positions at the transmitter and at the receiver.

Subject:
Physical Science
Physics
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Adams, Wendy
Dubson, Michael
LeMaster, Ron
Perkins, Kathy
Podolefsky, Noah
Wieman, Carl
Date Added:
06/02/2008
Simon Says Big Amplitude, Small Wavelength!
Read the Fine Print
Educational Use
Rating
0.0 stars

In this activity, students play the game Simon Says to make the amplitudes and wavelengths defined by the teacher. First they play alone, and then they play with a partner using a piece of rope.

Subject:
Career and Technical Education
Physical Science
Physics
Technology and Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering NGSS Aligned Resources
Author:
Abigail Watrous
Frank Burkholder
Integrated Teaching and Learning Program,
Janet Yowell
Date Added:
10/14/2015
Simple Instruments
Read the Fine Print
Educational Use
Rating
0.0 stars

Students work with partners to create four different instruments to investigate the frequency of the sounds they make. Teams may choose to make a shoebox guitar, water-glass xylophone, straw panpipe or a soda bottle organ (or all four!). Conduct this activity in conjunction with Lesson 3 of the Sound and Light unit.

Subject:
Career and Technical Education
Technology and Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering NGSS Aligned Resources
Author:
Abigail Watrous
Brad Dunkin
Brian Kay
Frank Burkholder
Integrated Teaching and Learning Program,
Janet Yowell
Jessica Todd
Luke Simmons
Date Added:
10/14/2015
Sinclair's College Physics
Unrestricted Use
CC BY
Rating
0.0 stars

This introductory, algebra-based, two-semester college physics book is grounded with real-world examples, illustrations, and explanations to help students grasp key, fundamental physics concepts. This online, fully editable and customizable title includes learning objectives, concept questions, links to labs and simulations, and ample practice opportunities to solve traditional physics application problems. Derived from College Physics by OpenStax

Subject:
Physical Science
Physics
Material Type:
Textbook
Provider:
Rice University
Provider Set:
OpenStax CNX
Author:
Michael Sinclair
Date Added:
09/17/2016
Sound
Unrestricted Use
CC BY
Rating
0.0 stars

This simulation lets you see sound waves. Adjust the frequency or volume and you can see and hear how the wave changes. Move the listener around and hear what she hears.

Subject:
Physical Science
Physics
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Adams, Wendy
Carl Wieman
Danielle Harlow
Harlow, Danielle
Kathy Perkins
LeMaster, Ron
Perkins, Kathy
PhET Interactive Simulations
Ron LeMaster
Wendy Adams
Wieman, Carl
Date Added:
10/22/2006
Sound (AR)
Unrestricted Use
CC BY
Rating
0.0 stars

This simulation lets you see sound waves. Adjust the frequency or volume and you can see and hear how the wave changes. Move the listener around and hear what she hears.

Subject:
Physical Science
Physics
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Adams, Wendy
Harlow, Danielle
LeMaster, Ron
Perkins, Kathy
Wieman, Carl
Date Added:
06/01/2004