Updating search results...

Search Resources

129 Results

View
Selected filters:
Walk the Line: A Module on Linear Functions
Read the Fine Print
Educational Use
Rating
0.0 stars

Prepared with pre-algebra or algebra 1 classes in mind, this module leads students through the process of graphing data and finding a line of best fit while exploring the characteristics of linear equations in algebraic and graphic formats. Then, these topics are connected to real-world experiences in which people use linear functions. During the module, students use these scientific concepts to solve the following hypothetical challenge: You are a new researcher in a lab, and your boss has just given you your first task to analyze a set of data. It being your first assignment, you ask an undergraduate student working in your lab to help you figure it out. She responds that you must determine what the data represents and then find an equation that models the data. You believe that you will be able to determine what the data represents on your own, but you ask for further help modeling the data. In response, she says she is not completely sure how to do it, but gives a list of equations that may fit the data. This module is built around the legacy cycle, a format that incorporates educational research feindings on how people best learn.

Subject:
Algebra
Career and Technical Education
Life Science
Mathematics
Technology and Engineering
Material Type:
Unit of Study
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Aubrey Mckelvey
TeachEngineering.org
VU Bioengineering RET Program,
Date Added:
09/18/2014
What Do I Need to Know about Heart Valves?
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are presented with the unit's grand challenge problem: You are the lead engineer for a biomaterials company that has a cardiovascular systems client who wants you to develop a model that can be used to test the properties of heart valves without using real specimens. How might you go about accomplishing this task? What information do you need to create an accurate model? How could your materials be tested? Students brainstorm as a class, then learn some basic information relevant to the problem (by reading the transcript of an interview with a biomedical engineer), and then learn more specific information on how heart tissues work their structure and composition (lecture information presented by the teacher). This prepares them for the associated activity, during which students cement their understanding of the heart and its function by dissecting sheep hearts to explore heart anatomy.

Subject:
Career and Technical Education
Health Science
Technology and Engineering
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering NGSS Aligned Resources
Author:
Michael Duplessis
VU Bioengineering RET Program, School of Engineering, Vanderbilt University,
Date Added:
10/14/2015
What Does Light See?
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are introduced to the concept of refraction. After making sure they understand the concepts of diffraction and interference, students work collaboratively to explain optical phenomena that cannot be accounted for via these two mechanisms alone. Then, through the associated activity, students see first-hand how refraction can work with interference to produce color patterns, similar to how nanosensors work. Finally, students apply their knowledge of refraction to the original challenge question to generate a possible solution in the form of a biosensor.

Subject:
Career and Technical Education
Physical Science
Physics
Technology and Engineering
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering NGSS Aligned Resources
Author:
Caleb Swartz
VU Bioengineering RET Program,
Date Added:
09/18/2014
What Is Going on with Grandma?
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are introduced to the concepts of the challenge question. First independently, and then in small groups, they generate ideas for solving the grand challenge introduced in the associated lesson: Your grandmother has a fractured hip and a BMD of -3.3. What medical diagnosis explains her condition? What are some possible causes? What are preventative measures for other family members? Students complete a worksheet that contains the pertinent questions, as well as develop additional questions of their own, all with the focus on determining what additional background knowledge they need to research. Finally, as a class, students compile their ideas, resulting in a visual as a learning supplement.

Subject:
Career and Technical Education
Health Science
Technology and Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering NGSS Aligned Resources
Author:
Morgan Evans
VU Bioengineering RET Program,
Date Added:
09/18/2014
What Makes Up a Color?
Read the Fine Print
Educational Use
Rating
0.0 stars

As a part of the research and revise step of the Legacy Cycle, this lesson provides students with information they will need later on to be able to average pixels to simulate blurring in the peripheral plane of vision. Students learn why image color becomes important as we distort the outer boundaries of an image and have to interpolate pixels to fill in gaps created from our algorithm. Students learn what a digital image is, what pixels are, and how to convert between RGB and hexadecimal values.

Subject:
Career and Technical Education
Physical Science
Physics
Technology and Engineering
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering NGSS Aligned Resources
Author:
Anna Goncharova
Mark Gonyea
Rachelle Klinger
VU Bioengineering RET Program,
Date Added:
09/18/2014
What Makes our Bones Strong?
Read the Fine Print
Educational Use
Rating
0.0 stars

Students will use this activity to determine what keeps our bones strong. Soaking the bones in vinegar will remove the calcium from the bones causing them to become soft and rubbery. Students will find that when we age, calcium is depleted from our bones faster than we can restore it. They will then determine what complications can arise from it.

Subject:
Career and Technical Education
Life Science
Technology and Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Morgan Evans (Primary Author)
TeachEngineering.org
VU Bioengineering RET Program,
Date Added:
09/18/2014
What's with All the Pressure?
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn how to take blood pressure by observing a teacher demonstration and then practicing on fellow classmates in small groups. Once the hands-on component of this activity is completed, the class brainstorms and discusses how blood pressure might affect a person's health. This activity acts as hook for the second lesson in this unit, in which blood pressure is presented in detail, as well as how variances in blood pressure can affect a person's cardiovascular system.

Subject:
Career and Technical Education
Life Science
Technology and Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Carleigh Samson
Janet Yowell
Michael Duplessis
TeachEngineering.org
VU Bioengineering RET Program,
Date Added:
09/18/2014
When Silicon Talks
Read the Fine Print
Educational Use
Rating
0.0 stars

In the first half of this two-part activity, students practice solving problems involving refraction using the index of refraction and Snell's law equations; they mathematically solve for precise angles and speeds caused by refraction. In the second half of the activity, a hands-on lab, they apply the analytical skills required by the problem set to reflectance measurements of porous silicon thin films, including how reflectance measurements would change if various aspects of the film were altered. Students predict the data output in the form of reflectance measurements when samples are altered, which connects to the idea of being able to make predictions about the data output of a biosensing thin film that couples with a target molecule.

Subject:
Career and Technical Education
Physical Science
Physics
Technology and Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering NGSS Aligned Resources
Author:
Caleb Swartz
VU Bioengineering RET Program,
Date Added:
09/18/2014
You be the Radiologist!
Read the Fine Print
Educational Use
Rating
0.0 stars

In addition to the associated lesson, this activity functions as a summative assessment for the Using Stress and Strain to Detect Cancer unit. In this activity, students will create a 1-D strain plot in Microsoft Excel depicting the location of a breast tumor amidst healthy tissue. The results of this activity will function as proof of the accuracy and reliability of the students' breast cancer detection design.

Subject:
Career and Technical Education
Physical Science
Physics
Technology and Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering NGSS Aligned Resources
Author:
Luke Diamond
Meghan Murphy
VU Bioengineering RET Program, School of Engineering,
Date Added:
09/18/2014