The basic properties of functions of one complex variable. Cauchy's theorem, holomorphic …
The basic properties of functions of one complex variable. Cauchy's theorem, holomorphic and meromorphic functions, residues, contour integrals, conformal mapping. Infinite series and products, the gamma function, the Mittag-Leffler theorem. Harmonic functions, Dirichlet's problem. This is an advanced undergraduate course dealing with calculus in one complex variable with geometric emphasis. Since the course Analysis I is a prerequisite, topological notions like compactness, connectedness, and related properties of continuous functions are taken for granted. This course offers biweekly problem sets with solutions, two term tests and a final exam, all with solutions.
In this five lesson unit with overview from Illuminations, student activities explore …
In this five lesson unit with overview from Illuminations, student activities explore relationships among fractions through work with the length model. Students construct fraction strips and use fraction bars throughout the unit to make sense of basic fraction concepts, to compare fractions and order fractions and to work with equivalency in fractions. Specific learning objectives, a material list, an instructional plan, questions for the students, assessment options, extensions, and teacher reflections are given for each lesson.
This unit from Illuminations consists of five lessons designed to help students …
This unit from Illuminations consists of five lessons designed to help students understand fractions when they are represented as a part of a region. Learners investigate relationships between parts and wholes, the relative value of the fraction based on the pattern block shape and equivalency while working with physical and/or virtual pattern blocks. Instructional plan, questions for the students, assessment options, extensions, and teacher reflections are given for each lesson.
The goal of this task is to use ideas about linear functions …
The goal of this task is to use ideas about linear functions in order to determine when certain angles are right angles. The key piece of knowledge implemented is that two lines (which are not vertical or horizontal) are perpendicular when their slopes are inverse reciprocals of one another.
This is a task from the Illustrative Mathematics website that is one …
This is a task from the Illustrative Mathematics website that is one part of a complete illustration of the standard to which it is aligned. Each task has at least one solution and some commentary that addresses important aspects of the task and its potential use.
This is a task from the Illustrative Mathematics website that is one …
This is a task from the Illustrative Mathematics website that is one part of a complete illustration of the standard to which it is aligned. Each task has at least one solution and some commentary that addresses important asects of the task and its potential use. Here are the first few lines of the commentary for this task: Three circles, each having radius 2, are mutually tangent as pictured below: What is the total area of the circles together with the shaded region?...
This is a task from the Illustrative Mathematics website that is one …
This is a task from the Illustrative Mathematics website that is one part of a complete illustration of the standard to which it is aligned. Each task has at least one solution and some commentary that addresses important asects of the task and its potential use. Here are the first few lines of the commentary for this task: Suppose $C$ is a circle with center $O$ as pictured below: Find all lines of symmetry of the circle and explain why the list is complete....
This is a task from the Illustrative Mathematics website that is one …
This is a task from the Illustrative Mathematics website that is one part of a complete illustration of the standard to which it is aligned. Each task has at least one solution and some commentary that addresses important asects of the task and its potential use. Here are the first few lines of the commentary for this task: Choose two distinct points $A$ and $B$ in the plane. For which points $C$ is $\triangle ABC$ a right triangle? For which points $C$ is $\triangle ABC$ ...
This is a task from the Illustrative Mathematics website that is one …
This is a task from the Illustrative Mathematics website that is one part of a complete illustration of the standard to which it is aligned. Each task has at least one solution and some commentary that addresses important aspects of the task and its potential use.
This is a task from the Illustrative Mathematics website that is one …
This is a task from the Illustrative Mathematics website that is one part of a complete illustration of the standard to which it is aligned. Each task has at least one solution and some commentary that addresses important aspects of the task and its potential use.
This is a task from the Illustrative Mathematics website that is one …
This is a task from the Illustrative Mathematics website that is one part of a complete illustration of the standard to which it is aligned. Each task has at least one solution and some commentary that addresses important asects of the task and its potential use. Here are the first few lines of the commentary for this task: Alex and his friends are studying for a geometry test and one of the main topics covered is parallel lines. They each write down what they think it mea...
This is a task from the Illustrative Mathematics website that is one …
This is a task from the Illustrative Mathematics website that is one part of a complete illustration of the standard to which it is aligned. Each task has at least one solution and some commentary that addresses important asects of the task and its potential use. Here are the first few lines of the commentary for this task: Three students have proposed these ways to describe when two lines $\ell$ and $m$ are perpendicular: $\ell$ and $m$ are perpendicular if they meet at o...
This is a task from the Illustrative Mathematics website that is one …
This is a task from the Illustrative Mathematics website that is one part of a complete illustration of the standard to which it is aligned. Each task has at least one solution and some commentary that addresses important asects of the task and its potential use. Here are the first few lines of the commentary for this task: Carlos finds the following definition of a reflection in a math book: The reflection $r_\ell$ about a line $\ell$ takes each point $P$ on $\ell$ to its...
This is a task from the Illustrative Mathematics website that is one …
This is a task from the Illustrative Mathematics website that is one part of a complete illustration of the standard to which it is aligned. Each task has at least one solution and some commentary that addresses important asects of the task and its potential use. Here are the first few lines of the commentary for this task: Consider the following possible definitions for rotation of the plane by an angle $a$ about the point $P$: If $Q$ is a point in the plane, then we send...
This is a task from the Illustrative Mathematics website that is one …
This is a task from the Illustrative Mathematics website that is one part of a complete illustration of the standard to which it is aligned. Each task has at least one solution and some commentary that addresses important asects of the task and its potential use. Here are the first few lines of the commentary for this task: Let $f$ be the map which dilates the plane by a factor $r \gt 0$ with repsect to a center $O$. We will denote tthe image $f(A)$ of a point $A$ by $A^\p...
This is a task from the Illustrative Mathematics website that is one …
This is a task from the Illustrative Mathematics website that is one part of a complete illustration of the standard to which it is aligned. Each task has at least one solution and some commentary that addresses important asects of the task and its potential use. Here are the first few lines of the commentary for this task: A rigid motion of the plane is a map of the plane to itself which preserves distances between points. Let $f$ be such a function.A point $x$ in the pla...
This is a task from the Illustrative Mathematics website that is one …
This is a task from the Illustrative Mathematics website that is one part of a complete illustration of the standard to which it is aligned. Each task has at least one solution and some commentary that addresses important asects of the task and its potential use. Here are the first few lines of the commentary for this task: Rhianna has learned the SSS and SAS congruence tests for triangles and she wonders if these tests might work for parallelograms. Suppose $ABCD$ and $EF...
This is a task from the Illustrative Mathematics website that is one …
This is a task from the Illustrative Mathematics website that is one part of a complete illustration of the standard to which it is aligned. Each task has at least one solution and some commentary that addresses important aspects of the task and its potential use.
This is a task from the Illustrative Mathematics website that is one …
This is a task from the Illustrative Mathematics website that is one part of a complete illustration of the standard to which it is aligned. Each task has at least one solution and some commentary that addresses important aspects of the task and its potential use.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.