(Nota: Esta es una traducción de un recurso educativo abierto creado por …
(Nota: Esta es una traducción de un recurso educativo abierto creado por el Departamento de Educación del Estado de Nueva York (NYSED) como parte del proyecto "EngageNY" en 2013. Aunque el recurso real fue traducido por personas, la siguiente descripción se tradujo del inglés original usando Google Translate para ayudar a los usuarios potenciales a decidir si se adapta a sus necesidades y puede contener errores gramaticales o lingüísticos. La descripción original en inglés también se proporciona a continuación.)
En el módulo 3, la comprensión de los estudiantes de la adición y la resta de las fracciones se extiende desde el trabajo anterior con equivalencia de fracción y decimales. Este módulo marca un cambio significativo lejos de la centralidad de los grados elementales de las diez unidades de base al estudio y el uso del conjunto completo de unidades fraccionarias desde el avance de grado 5, especialmente como se aplica al álgebra.
Encuentre el resto de los recursos matemáticos de Engageny en https://archive.org/details/engageny-mathematics.
English Description: In Module 3, students' understanding of addition and subtraction of fractions extends from earlier work with fraction equivalence and decimals. This module marks a significant shift away from the elementary grades' centrality of base ten units to the study and use of the full set of fractional units from Grade 5 forward, especially as applied to algebra.
Find the rest of the EngageNY Mathematics resources at https://archive.org/details/engageny-mathematics.
(Nota: Esta es una traducción de un recurso educativo abierto creado por …
(Nota: Esta es una traducción de un recurso educativo abierto creado por el Departamento de Educación del Estado de Nueva York (NYSED) como parte del proyecto "EngageNY" en 2013. Aunque el recurso real fue traducido por personas, la siguiente descripción se tradujo del inglés original usando Google Translate para ayudar a los usuarios potenciales a decidir si se adapta a sus necesidades y puede contener errores gramaticales o lingüísticos. La descripción original en inglés también se proporciona a continuación.)
En el módulo 8, el módulo final del año, los estudiantes amplían su comprensión de las relaciones completas a través de la lente de la geometría. A medida que los estudiantes componen y descomponen formas, comienzan a desarrollar una comprensión de las fracciones unitarias como partes iguales de un todo.
Encuentre el resto de los recursos matemáticos de Engageny en https://archive.org/details/engageny-mathematics.
English Description: In Module 8, the final module of the year, students extend their understanding of partwhole relationships through the lens of geometry. As students compose and decompose shapes, they begin to develop an understanding of unit fractions as equal parts of a whole.
Find the rest of the EngageNY Mathematics resources at https://archive.org/details/engageny-mathematics.
(Nota: Esta es una traducción de un recurso educativo abierto creado por …
(Nota: Esta es una traducción de un recurso educativo abierto creado por el Departamento de Educación del Estado de Nueva York (NYSED) como parte del proyecto "EngageNY" en 2013. Aunque el recurso real fue traducido por personas, la siguiente descripción se tradujo del inglés original usando Google Translate para ayudar a los usuarios potenciales a decidir si se adapta a sus necesidades y puede contener errores gramaticales o lingüísticos. La descripción original en inglés también se proporciona a continuación.)
Este módulo de 20 días brinda a los estudiantes su primera oportunidad de explorar los números decimales a través de su relación con las fracciones decimales, expresando una cantidad dada tanto en la fracción como en las formas decimales. Utilizando la comprensión de las fracciones desarrolladas en todo el Módulo 5, los estudiantes aplican el mismo razonamiento a los números decimales, construyendo una base sólida para el trabajo de grado 5 con operaciones decimales.
Encuentre el resto de los recursos matemáticos de Engageny en https://archive.org/details/engageny-mathematics.
English Description: This 20-day module gives students their first opportunity to explore decimal numbers via their relationship to decimal fractions, expressing a given quantity in both fraction and decimal forms. Utilizing the understanding of fractions developed throughout Module 5, students apply the same reasoning to decimal numbers, building a solid foundation for Grade 5 work with decimal operations.
Find the rest of the EngageNY Mathematics resources at https://archive.org/details/engageny-mathematics.
(Nota: Esta es una traducción de un recurso educativo abierto creado por …
(Nota: Esta es una traducción de un recurso educativo abierto creado por el Departamento de Educación del Estado de Nueva York (NYSED) como parte del proyecto "EngageNY" en 2013. Aunque el recurso real fue traducido por personas, la siguiente descripción se tradujo del inglés original usando Google Translate para ayudar a los usuarios potenciales a decidir si se adapta a sus necesidades y puede contener errores gramaticales o lingüísticos. La descripción original en inglés también se proporciona a continuación.)
Módulo 4 de grado 5 extiende la comprensión del estudiante de las operaciones de fracción a la multiplicación y la división de fracciones y fracciones decimales. El trabajo procede de la interpretación de los gráficos de línea que incluyen mediciones fraccionales para interpretar las fracciones como división y razonamiento sobre la búsqueda de fracciones de conjuntos a través de la fracción por multiplicación de números enteros. El módulo procede a la fracción por multiplicación de fracción en formas de fracción y decimal. Una comprensión de la multiplicación como escala y multiplicación por N/N como multiplicación por 1 permite a los estudiantes razonar sobre productos y convertir fracciones en decimales y viceversa. Los estudiantes son presentados al trabajo de división con fracciones y fracciones decimales. Los casos de división se limitan a la división de números enteros por fracciones unitarias y fracciones unitarias por números enteros. Se introducen divisores de fracción decimal y la fracción equivalente y el pensamiento del valor del lugar permiten al alumno razonar sobre el tamaño de los cocientes, calcular los cocientes y colocar decimales con sensatez en los cocientes. A lo largo del módulo, se les pide a los estudiantes que razonen sobre estos conceptos importantes interpretando expresiones numéricas que incluyen operaciones de fracción y decimales y perseverar en la resolución de problemas de varios pasos en el mundo real que incluyen todas las operaciones de fracción compatibles con el uso de diagramas de cintas.
Encuentre el resto de los recursos matemáticos de Engageny en https://archive.org/details/engageny-mathematics.
English Description: Grade 5s Module 4 extends student understanding of fraction operations to multiplication and division of both fractions and decimal fractions. Work proceeds from interpretation of line plots which include fractional measurements to interpreting fractions as division and reasoning about finding fractions of sets through fraction by whole number multiplication. The module proceeds to fraction by fraction multiplication in both fraction and decimal forms. An understanding of multiplication as scaling and multiplication by n/n as multiplication by 1 allows students to reason about products and convert fractions to decimals and vice versa. Students are introduced to the work of division with fractions and decimal fractions. Division cases are limited to division of whole numbers by unit fractions and unit fractions by whole numbers. Decimal fraction divisors are introduced and equivalent fraction and place value thinking allow student to reason about the size of quotients, calculate quotients and sensibly place decimals in quotients. Throughout the module students are asked to reason about these important concepts by interpreting numerical expressions which include fraction and decimal operations and by persevering in solving real-world, multistep problems which include all fraction operations supported by the use of tape diagrams.
Find the rest of the EngageNY Mathematics resources at https://archive.org/details/engageny-mathematics.
*This numberless application problem is the same application problem used the engage …
*This numberless application problem is the same application problem used the engage lesson: Grade 5, Module 3, Lesson 1 *Numberless word problems are used to support students in solving word problems. They allow students to discover for themselves the structure of the problems they're solving. In doing so, they will be able to successfully find the operation or operations they need to use to determine the solution. *Numberless word problems help students develop number sense, make sense of word problems, and encourage precise mathematical vocabulary. *Based on the work of Brian Bushart. *Created using ideas from WI Math Institute training. Google Slides presentation created as an adaption of WiseLearn resource by Sarah Martinsen and Kelly Shaefer. *These slides could be inserted into the free Engage New York lesson google slides from embarc.online.
*This numberless application problem is the same application problem used the engage …
*This numberless application problem is the same application problem used the engage lesson: Grade 5, Module 3, Lesson 3 *Numberless word problems are used to support students in solving word problems. They allow students to discover for themselves the structure of the problems they're solving. In doing so, they will be able to successfully find the operation or operations they need to use to determine the solution. *Numberless word problems help students develop number sense, make sense of word problems, and encourage precise mathematical vocabulary. *Based on the work of Brian Bushart. *Created using ideas from WI Math Institute training. Google Slides presentation created as an adaption of WiseLearn resource by Sarah Martinsen and Kelly Schaefer. *These slides could be inserted into the free Engage New York lesson google slides from embarc.online.
When fractions are represented pictorially, they are always fractions ofsome whole. It is …
When fractions are represented pictorially, they are always fractions ofsome whole. It is sometimes easy to forget to indicate this in a picture, particularly because the idea may be clear in our own mind. The goal of this task is to show that when the whole is not specified, which fraction is being represented is left ambiguous. The teacher may wish to simply draw this picture on the board and have students think about what fraction the picture represents and follow this up with a discussion. When the whole is not specified for a fraction, a picture can represent an infinite number of different fractions: in this case there could be any number of small boxes (1,2,3, ...) in a whole and each possibility leads to a different meaning for the shaded or unshaded part of the picture.The Standards for Mathematical Practice focus on the nature of the learning experiences by attending to the thinking processes and habits of mind that students need to develop in order to attain a deep and flexible understanding of mathematics. Certain tasks lend themselves to the demonstration of specific practices by students. The practices that are observable during exploration of a task depend on how instruction unfolds in the classroom. While it is possible that tasks may be connected to several practices, only one practice connection will be discussed in depth. Possible secondary practice connections may be discussed but not in the same degree of detail. This particular task supports the demonstration of Mathematical Practice Standard 6, Attend to precision. Students are faced with elements of ambiguity in deciding what encompasses the whole. The whole in turn impacts the representation of a specific fraction. Students learn to appreciate, understand, and use mathematical vocabulary more precisely in interpreting and describing the whole and its fractional parts. While using different representations, such as pictures, they use appropriate labels to communicate the meaning of their representation (in this task the whole fraction and its accompanying fractional part). Students also understand the possibility of different interpretations and therefore the necessity for precision in their work.
This math meets ecology lesson provides hands-on experiences with mixing oil and …
This math meets ecology lesson provides hands-on experiences with mixing oil and water, provides surface area information about the 2010 oil spill in the Gulf of Mexico, and gives learners opportunities to estimate small oil spills of their own making. This lesson guide includes questions for learners, assessment options, extensions, and reflection questions.
This math meets ecology lesson provides hands-on experiences with mixing oil and …
This math meets ecology lesson provides hands-on experiences with mixing oil and water, provides surface area information about the 2010 oil spill in the Gulf of Mexico, and gives learners opportunities to estimate small oil spills of their own making. This lesson guide includes questions for learners, assessment options, extensions, and reflection questions.
The purpose of this task is to help solidify students' understanding of …
The purpose of this task is to help solidify students' understanding of signed numbers as points on a number line and to understand the geometric interpretation of adding and subtracting signed numbers.
The purpose of this task is to present students with a situation …
The purpose of this task is to present students with a situation in which they need to divide a whole number by a unit fraction in order to find a solution.
The purpose of this task is for students to find the answer …
The purpose of this task is for students to find the answer to a question in context that can be represented by fraction multiplication. This task is appropriate for either instruction or assessment depending on how it is used and where students are in their understanding of fraction multiplication.
In this unit, students investigate fractional parts of the whole and use …
In this unit, students investigate fractional parts of the whole and use translations, reflections, rotations, and line symmetry to make four-part quilt squares. Students have a practical context for using the mathematical terms associated with divisions of the square, transformations, and symmetries. Suggestions for implementation and extensions are included.
This task provides a context where it is appropriate for students to …
This task provides a context where it is appropriate for students to subtract fractions with a common denominator; it could be used for either assessment or instructional purposes.
This mobile app (available for both iOS and Android devices) was developed …
This mobile app (available for both iOS and Android devices) was developed by the National Council of Teachers of Mathematics with funding from Verizon Foundation. The app is based on the Decimal Maze from the popular lesson "Too Big or Too Small". The goal is to help Okta reach the target (maximum, minimum, or a specific value) by choosing a path from the top of the maze to the bottom — adding, subtracting, multiplying and dividing as the player goes. Seven levels with seven puzzles in each level test the player's skills with operation with powers of ten, negative numbers, fractions, decimals, and exponents.
This instructional guide (PDF) is for the mobile app Pick-a-Path (both iOS …
This instructional guide (PDF) is for the mobile app Pick-a-Path (both iOS and Android platforms). The guide provides professional development by discussing the math in each level of the game, giving suggestions for classroom use, and recommending related resources from Illuminations. The Pick-a-Path app is cataloged separately and listed as a related resource.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.